Risk, Pre-mortems

Advanced materials risk - we are asking the wrong questions

Hilary Sutcliffe

15 Jan 2017

Understanding the right questions to ask and how best to get answers is critical to identifying and mitigating the real risks of emerging technologies.  It's something Professor Andrew Maynard now at Risk Innovation lab at Arizona State University has been thinking about for a long time and has concluded we may not be asking the right questions in the right way.   This is not a very recent initiative but demonstrates the sort of new thinking which is still very relevant for nanotech and other technologies.


The current focus on a ‘materials-centric’ approach alone may not be most relevant or appropriate in understanding and managing the risks, uncertainties and unknowns associated with new technologies, particularly advanced materials.  To explore what could replace it and why a new approach would be beneficial Prof Maynard asked our help in convening a brainstorm.   We brought together a group of 13 diverse experts in the areas of risk, business and research, over two days, to participate in an ideas workshop at the Royal Society. 


Stop focusing on theoretical risks and look at potential product areas:
The current approach relies on consideration of theoretical risks based on speculation about behaviours of different materials.  It has its shortcomings, in particular, it isn't effective at considering the real risks of the materials in use.


One possible way to explore the potential risks and safe use of advanced materials more generally, is to approach potential impacts from a potential product-perspective. Developing highly plausible case studies around speculative future products may provide useful insight into the potential risks – and risk mitigation strategies – associated, in this instance, with advanced materials.


The idea of proactively looking forward to imagine products likely to enter the market in the near future is a challenge in itself, and one open to highly speculative discussions concerning their “unknown unknowns”. But developing speculative case studies is, in principle, a powerful tool if the case studies are grounded in economic, social and technological plausibility. In other words, this is an interesting approach if the product case studies are technologically feasible, if they are likely to sit comfortably with people who produce, use and are affected by them, and if they describe products that have a reasonable chance of being commercially introduced and successful. The workshop found stumbling blocks in virtually all these areas which shed light on the plausibility of speculative risks themselves.


A strict adherence to plausibility essential
Over two days, the group focused on developing a set of plausible, speculative case studies. Recognising that a different group of people would undoubtedly come up with four different case studies, the emphasis of the workshop was primarily on the process undertaken more than the applications and materials that were imagined. That said, both the process and the specific applications proved to be illuminating.


At the heart of the process was a strict adherence to plausibility. Each potential case study was rigorously vetted in terms of its technological feasibility and its likely commercial viability. This meant being specific about the nature of a proposed material, and the way it would be used in a product. A case study did not make the cut if the participants couldn’t describe the starting material and how it would be used in a specific product (and why) that aligned with a commercial opportunity.  This in itself is helpful in realising the time wasted currently in exploring perceived risk of materials that are not actually plausible.  


Four case studies were developed:

  • Graphene in conducting inks used to print inexpensive functional labels on consumer products;
  • Cadmium telluride quantum dots as a component of roll-on-roll flexible photovoltaic materials used to make inexpensive solar cell balloons;
  • Micrometer scale mesoporous amorphous silicon dioxide particles for local controlled-release drug delivery from implanted medical devices;
  • Cultivated recombinantly engineered tobacco mosaic virus as a template for platinum shell-based nanoparticles used in a heterogeneous catalyst for splitting water to hydrogen and oxygen under sunlight.

Understanding the right questions to ask and how best to get the answers is critical to identifying and mitigating the actual, not the perceived, risks of emerging technologies.


Disruptive risks appeared less plausible than currently envisaged

Once the product cases were developed, the discussion turned to potential material releases, exposures and health impacts. These discussions didn’t go too deep into the potential impacts, as the workshop was looking at process rather than drawing conclusions on specific materials. Nevertheless, they were revealing.


This process was aided by having a very diverse “brains trust” of experts and wider stakeholders around the table – the workshop included expertise on advanced materials, product development, technology innovation, commercialisation, design, risk assessment, public perception and governance.


In each case, participants struggled to imagine scenarios where the use of the material would lead to emergent risks that were significant and difficult to address using current tools and approaches. This will have been influenced by the people around the table and the cases developed, and is not an indication in itself that such risks will not emerge. But constraining the conversation to technologically, socially and commercially plausible products, not speculative materials risks, made identifying disruptive emergent surprisingly difficult.

A number of helpful initial insights arose from discussions:


It may be useful to move the conversation from highly speculative risks to plausible risks

While the four case studies developed represent a very small number of potential materials and products, the exercise was useful in moving the conversation from highly speculative risks associated with materials to more specific risks, pathways and mitigation approaches.


It helps reflect on likely relevance of speculative risks

In this respect, the process was also useful in helping to focus evaluation on the likely relevance of speculative or imagined risks associated with specific advanced materials.  Current approaches which focus on speculative risks may potentially result in resources diverted to unlikely areas which may be better focused on more likely and plausible risks.


Disruptive risks appear less likely

Participants struggled to imagine scenarios where the use of the material would lead to emergent risks that were significant and difficult to address using current tools and approaches.  This will have been influenced by the people around the table and the cases developed, and is not an indication in itself that such risks will not emerge.  Yet constraining the conversation to technologically, socially and commercially plausible products made identifying disruptive emergent risks a tough challenge.


It helps clarify distinctions on useful research pathways

The plausible, speculative case study approach helped clarify distinctions between research to extend knowledge of potential risks and research to inform action on plausible risks.  The process followed was useful to help identify practical situations where an advanced material in a product may lead to health impacts if used in a certain way, as well as helping identify risk management options and areas where more research would be needed.


The process also highlighted the dangers of becoming complacent over advanced material risks, and failing to invest sufficient effort in exploring the “unknown unknowns”. This is not necessarily as a way of directly guiding production, policy and purchasing decisions, but as a way of ensuring that, given significant unidentified risks, they are subsequently identified and used to inform decisions in a timely manner.

Workshop Outputs

The workshop was helpful for those of us involved in risk and governance to consider new approaches and new ways of thinking about risk and governance.  Whilst the focus here was advanced materials and nanotech in particularly it is also useful in exploring new approaches to risk in other areas.


Outputs from the workshop is include a book chapter in the second edition of Nanotechnology Environmental Health and Safety: Risks, Regulation and Management (Micro and Nano Technologies) (eds. Matt Hull and Diana Bowman) launched on July 10th in Washington and available on Amazon


In addition, peer-reviewed publications will be available on the use of plausible speculative case studies in exploring advanced materials safety; and more widely accessible information for a broad audience on the process, the case studies and the key findings. Further details on these will be available shortly.

Why this is important?


Professor Maynard identified a series of key questions to consider at the workshop, though the group was free to build or discard these as they saw fit.  These were:

  • Whether developing highly plausible case studies around speculative future products can provide useful insight into the potential risks – and risk mitigation strategies – associated with advanced materials
  • Whether case studies along these lines could help confine the near-infinite number of “unknown unknowns” associated with the possible risks of advanced materials to a much smaller number of “plausible unknowns”; and
  • Whether taking a product-centric approach to ensuring the acceptably safe development and use of advanced materials provides greater insight than taking a materials-centric approach in some cases?

Over the past decade, considerable research has focused on the possible health risks associated with engineered nanomaterials. These are materials designed to have specific properties by nature of how they are engineered at a very fine size scale. As a class of material they are intellectually and commercially interesting – they demonstrate unusual behaviors, can add value to certain products because of this, and may in some cases provide new approaches to addressing social and environmental challenges. Yet from a health risk perspective, engineered nanomaterials as a category of materials present a number of unique challenges. They do not, for instance, represent all emerging materials that have the potential to affect people’s health and safety. And there is a danger that emphasizing them over other materials has led to an under-emphasis on or distraction from other potentially dangerous materials that don’t fit the “engineered nanomaterial” rubric.


What’s more, characteristics that typically differentiate engineered nanomaterials from other materials are only indirectly associated with health impact. Size for instance – a key differentiator of nanomaterials – may influence exposure and hazard, but is not necessarily a key indicator of risk. And novel physical or chemical behavior – another characteristic of engineered nanomaterials – is not necessarily a strong predictor of risk. To compound this, an emphasis on scale and novelty rather than end-use and plausible biological behavior can sometimes encourage speculation on a near-infinite number of risk “unknown unknowns”. These are academically interesting, but potentially obscure the “plausible unknowns” that are important for responsible development and use.


As a result, the wider domain of advanced materials – materials that are intentionally designed and engineered to have properties that lead to new or enhanced products regardless of size – is not particularly well served in terms of identifying potential risks and strategies for addressing them. For example, searching Web of Science for “advanced material*” AND (risk OR safety) in Topic between 2000 and 2013 returns 70 publications (search date, July 16 2013). In contrast, the search nano* AND (risk OR safety) over the same period returns 7482 publications. The difference is in part due to nanomaterials often not being referred to as advanced materials. But it also indicates a dearth of risk-focused research on materials identified as advanced materials that are not also identified as engineered nanomaterials.

Workshop participants

  • Andrew Maynard – NSF International Professor of Environmental Health Sciences and Director of the Risk Science Center at the University of Michigan;
  • Hilary Sutcliffe – Director of the think tank MATTER;
  • Diana Bowman – Assistant Professor with the Risk Science Center and the School of Public Health Department of Health Management and Policy at the University of Michigan;
  • Steffi Friedrichs –  Director-General of the Nanotechnology Industries Association;
  • Andy Goodwin – Commercial Director- Materials Division, Thomas Swan & Co. Ltd;
  • David Grainger – University Distinguished Professor and George S. and Dolores Doré Eccles Presidential Endowed Chair in Pharmaceutics and Pharmaceutical Chemistry, Chair of the Department of Pharmaceutics and Pharmaceutical Chemistry, and Professor of Bioengineering at the University of Utah;
  • Nick Green – Head of Projects, Royal Society Science Policy Centre;
  • Tim Harper – Cientifica;
  • Matt Hull – Program Manager, Virginia Tech Institute for Critical Technology and Applied Science, Founder, NanoSafe, Inc.;
  • James King – Director, Science Practice;
  • Barry Park – Director, GBP Consulting Ltd, Nano KTN;
  • Vicki Stone – Professor, Herriot Watt University; and
  • Ben Trump – PhD student, University of Michigan School of Public Health